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The mating system in plant populations is influenced by genetic and environmental factors. Proper 
estimates of the outcrosing rates are often required for planning breeding programmes, conservation 
and management of tropical trees. However, although Moringa oleifera is adapted to a mixed mating 
system, the proportion of selfing has not been previously estimated. The current work therefore, shows 
the use of AFLP markers in a mating system study of M. oleifera seed orchard. Data revealed a mixed 
mating system with a multilocus outcrossing rate (tm) of 0.74. It further demonstrated that AFLP 
markers, though dominant with a lower information content than co-dominant markers are adequate for 
the study of the mating system in plant populations. The 26% selfing observed in M. oleifera can lead to 
overestimation of the proportion of additive genetic variance and appropriate adjustments are therefore 
required. However, the presence of selfing as well as early sexual maturity (6 months to 1 year) in M. 
oleifera provides an opportunity for developing inbred lines and hybridisation. Additionally, in 
designing M. oleifera seed orchards, randomisation and minimum distance between related individuals 
need to be worked out to maximise cross-fertilisation among unrelated clones and minimise selfing or 
mating among related ramets. 
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INTRODUCTION 
 
Moringa oleifera Lam belongs to a monogeneric family of 
shrubs and trees, the moringaceae (Ramachandran et 
al., 1980). M. oleifera seeds contains flocculants for 
water purification (Jahn, 1984; Gassenchmidt et al., 
1995; Muyibi and Evanson, 1995; Ndabigengesere et al., 
1995), antimicrobial substances (Jahn, 1984) and edible 
oil (Khan et al., 1975; Ramachandran et al., 1980). Other 
uses of this species are for vegetables, fodder, 
medicines, gum, food spices, rayon and paper pulp (Jahn 
et al., 1986; Nautiyal and Venkataraman, 1987; Babu and 
Rajasekaran, 1991; Jahn, 1991; Mayer and  Stelz,  1993; 
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Caceres et al., 1991). Wide scale planting of M. oleifera 
in East Africa has gained momentum over the last four 
years. Seeds for planting in Kenya, Tanzania and lately 
Uganda, are being obtained mainly from Mbololo, Kenya. 
These seed sources have been established and 
maintained by farmers and information is scarce on their 
genetic quality. 

The mating system in plant populations is influenced by 
genetic and environmental factors (Clegg, 1980). Proper 
estimates of the outcrossing rates are often needed for 
planning breeding programmes (Ritland and Jain, 1981), 
conservation and management of tropical trees 
(Loveless, 1992). The majority of outcrossing 
angiosperms have bisexual flowers, a condition from 
which  self-pollination  can  evolve  directly   through   the  



 
 
 
 
modification of self-incompatibility or other floral traits that 
prevent self-pollination (Schoen et al., 1997). In addition 
to the role of the variable floral architectures in 
determining mating systems of the plant populations 
(Ennos, 1981), the mating system may be sensitive to 
plant density and population size (Clegg, 1980; Ennos 
and Clegg, 1982; Goodell et al., 1997), type of pollination 
vector and abundance (Aide, 1986), flower colour (Brown 
and Clegg, 1984), size of floral display (Dudash and 
Barret, 1989) and anther-stigma separation (Karron et al., 
1997). Temporal changes in quality or quantity of 
pollinator service or variation in the timing of flowering 
can lead to seasonal changes in the mating patterns and 
composition of the outcross pollen pool (Moran and 
Brown, 1980; Fripp et al., 1987; Goodell et al., 1997; 
Mitchell and Marshall, 1998). As such it is reasonable to 
expect that outcrossing rates could vary extensively both 
spatially within and between populations, and temporally 
within a single population (Wolfe and Shore, 1992). 

Traditional methods used for the measurement of 
mating systems have been based on the analysis of floral 
morphology, greenhouse crossing experiments, and 
(where appropriate) the observation of pollinator 
behaviour (Clegg, 1980). The practical use of phenotypic 
markers in trees is limited by a number of factors such as 
long time required for progeny to reach maturity for the 
markers to be scored and lack of consistency between 
phenotypic markers and outcrossing (Gjuric and Smith, 
1996). The development and application of isozymes 
provided numerous genetic markers which can be used 
to measure mating systems in plant populations (Brown 
and Allard, 1970; Holtsford and Ellstrand, 1990; Cottrell 
and White, 1995; Premoli, 1996; Schoen et al., 1997). In 
recent years DNA based methods such as RAPDs 
(Gjuric and Smith, 1996) and AFLPs (Gaiotto et al., 1997) 
have been used to estimate outcrossing rates. However, 
due to their dominance behaviour, RAPD and AFLP 
markers provide less information per locus than co-
dominant markers (Gaiotto et al., 1997). This is 
particularly relevant for applications that require genotype 
discrimination, as in the case of outcrossing-rate estima-
tion (Gaiotto et al., 1997). However, Ritland and Jain 
(1981) demonstrated that this limitation could be readily 
overcome by multilocus estimation of outcrossing with 
dominant markers having intermediate gene frequencies.   

M. oleifera is adapted to selfing (geitonogamy) and 
outcrossing (xenogamy) with larger fruit set, seed set and 
fecundity in the latter mode (Jyoth et al., 1990). The 
flowers produce both pollen and nectar with bees as the 
main pollinators (Puri, 1941, Jyoth et al., 1990, Chand et 
al., 1994). However, the proportion of selfing in M. 
oleifera has not been previously estimated. The main 
aims of this study were to test the utility of dominant 
AFLP markers in estimating outcrossing rates in M. 
oleifera and then use them (AFLP markers) to obtain 
estimates of outcrossing rates in an M. oleifera seed 
orchard from Mbololo, Kenya. 
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MATERIALS AND METHODS 
 
Plant material and DNA isolation 
 
Single tree collection was carried out in an M. oleifera seed orchard 
in Mbololo, Kenya. The seeds were grown under greenhouse 
conditions. A random sample of 4 families of open pollinated 
progeny arrays of 20-23 individuals, giving a total of 86 individuals, 
were used for this study. DNA was isolated following a modification 
of Edwards et al. (1991) method exactly as used by Muluvi et al. 
(1999). 
 
 
AFLP procedure 
 
The AFLP technology was carried out as described by (Vos et al., 
1995), employing PstI and MseI as rare and frequent cutter 
enzymes, respectively. The nucleotide sequence of the two AFLP 
primer pairs used, PstI (P12, P11) and MseI (M51) together with the 
corresponding adapters are shown in Table.1. The AFLP markers 
were identified by the first primer code followed by the locus 
number, e.g., P12-1. 
 
 
Data analysis 
 
Scoring of bands was carried out considering only two possible 
alleles: band presence or absence. The mating system was 
analysed using the multilocus mixed mating program (MLDT) of 
Ritland (1990). From progeny array data, the programme 
simultaneously estimated (i) the multilocus outcrossing rates (tm) by 
the Newton-Raphson method; (ii) the mean single-locus 
outcrossing rate (ts); (iii) single locus inbreeding coefficient (Wright’s 
fixation index) of the maternal parents (F); (iv) the pollen and ovule 
allele frequencies by the expectation-maximisation method and; (v) 
variances of the above quantities using the bootstrap method where 
the progeny array (within families) is the unit of resampling (100 
bootstraps used). For each locus, a χ2 statistic was calculated to 
test the null hypothesis that the number of observed progeny 
individuals for each genotype class from each maternal genotype 
plant did not differ from the expected number under the mixed-
mating model. Assumptions of the model are as described in 
Ritland and Jain (1981). In particular, the model specifies that both 
selfing and outcrossing occur in the population (Shaw and Allard, 
1982). 
 
 
RESULTS 
 
Thirty seven out of 50 loci assayed had significant 
differences between the allele frequencies of ovules and 
incoming pollen at the 95% level (Table 2). This suggests 
that the maternal trees did not represent all the local 
pollen pools. However, this violation of the assumption of 
the equivalence of pollen allele frequencies received by 
the maternal trees has an unmeasurable but relatively 
minor effect on the estimate of the true population 
outcrossing rate (Ritland and Jain, 1981). A χ2 statistic to 
test the conformity of marker loci to the mixed-mating 
model, indicated that for seventeen AFLP markers the 
number of observed progeny individuals for each 
genotype class from each maternal genotype departed 
from the expected numbers (Table 2).  
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                       Table 1. Sequences of the AFLP primers and the corresponding adapters used in this study. 
 

Primer Nomenclature Sequence 
PstI adaptors  Forward  5′-CTCGTAGACTGCGTACATGCA-3′ 
                         Reverse  5’-TGTACGCAGTCTAC-3′ 
   

PstI Primers POO 5′-GAC TGC GTA CAT GCA G-3′ 
 P11 POO + AA 
 P12 POO + AC 
   

MseI adaptors Forward  5′-GACGATGAGTCCTGAG-3′ 
                          Reverse  5′-TACTCAGGACTCAT-3′ 
   

MseI Primers MOO 5′-GAT GAG TCC TGA GTA A-3′ 
 M51 MOO + CCA 

 
 
 
               Table 2. Allele frequencies, their respective standard deviations (σ), χ2 statistics for agreement with the mixed-mating model. 
 

 Gene frequency    Gene frequency  
Locus Pollen (σ) Ovule χ2  Locus Pollen(σ) ovule χ2 
P12-1 0.09 (0.07) 0.2 3.36 P11-26 0.05 (0.01) 0.5 10.43*
P12-2 0.06 (0.03) 0.1 0.86  P11-27 0.05 (0.03) 0.0   0.05 
P12-3 0.30 (0.07)  0.1 2.60  P11-28 0.06 (0.03) 0.0   0.10 
P12-4 0.03 (0.03) 0.1   6.38*  P11-29 0.13 (0.04) 0.0   0.04 
P12-5 0.04 (0.04) 0.1 13.54*  P11-30 0.06 (0.04) 0.1   5.71* 
P12-6 0.04 (0.04) 0.1   6.75*  P11-31 0.19 (0.06) 0.0   1.22 
P12-7 0.08 (0.05) 0.1 10.42*  P11-32 0.08 (0.05) 0.1   7.21* 
P12-8 0.49 (0.09) 0.2 0.76  P11-33 0.18 (0.08) 0.3   1.25 
P12-9 0.09 (0.04) 0.2 0.07  P11-34 0.00 (0.00) 0.1   0.58 
P12-10 0.17 (0.06) 0.2 2.12  P11-35 0.12 (0.05) 0.1   3.02 
P12-11 0.21 (0.09) 0.3   6.84*  P11-36 0.03 (0.02) 0.0   0.00 
P12-12 0.00 (0.00) 0.1   6.37*  P11-37 0.06 (0.04) 0.1 10.49* 
P12-13 0.00 (0.00) 0.2 2.08  P11-38 0.16 (0.06) 0.1   8.55* 
P12-14 0.17 (0.07) 0.1 11.18*  P11-39 0.02 (0.02) 0.0   0.01 
P12-15 0.01 (0.00) 0.5 2.76  P11-40 0.02 (0.02) 0.0   0.01 
P12-16 0.07 (0.04) 0.4 0.07  P11-41 0.19 (0.04) 0.0   0.16 
P12-17 0.02 (0.00) 0.5   9.01*  P11-42 0.20 (0.08) 0.3   3.93* 
P12-18 0.04 (0.03) 0.4 0.02  P11-43 0.98 (0.03) 0.9   0.02 
P12-19 0.03 (0.00) 0.5 11.85*  P11-44 0.65 (0.11) 0.8   0.05 
P12-20 0.01 (0.00) 0.5 0.10  P11-45 0.02 (0.02) 0.2   0.00 
P12-21 0.77 (0.07) 0.9 0.00  P11-46 0.02 (0.02) 0.2   0.00 
P12-22 0.02 (0.02) 0.0 0.00  P11-47 0.02 (0.02) 0.2   0.00 
P12-23 0.02 (0.02) 0.0 0.00  P11-48 0.02 (0.02) 0.2   0.00 
P12-24 0.06 (0.02) 0.5 13.03*  P11-49 0.02 (0.02) 0.2   0.00 
P12-25 0.05 (0.01) 0.5 10.43*  P11-50 0.18 (0.08) 0.8   0.04 

 
*Marker locus with significant deviation at the 0.05 level. 
Standard error for paternal gene frequencies were not computed because sampling was done within families. 

 
 
The estimates of multilocus outcrossing rates (tm) and 

single-locus outcrossing rates (ts) obtained from MLDT 
clearly indicate self compatibility in the M. oleifera mating 
system (Table 3). The multilocus outcrossing rate 
estimates based on all the 50 loci was 74%. Selfing may 

not be the only form of inbreeding experienced by a plant 
population. To investigate the possibility of biparental 
inbreeding (inbreeding arising from mating among related 
plants), the difference between the multilocus outcrossing 
rate estimates and the mean of the single locus  estimate  
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                Table 3. Multilocus (tm) and single-locus (ts) outcrossing rates and Wrights fixation index (F) (standard errors in parentheses). 
 

Site Families Offspring tm ts tm-ts F 
Mbololo 4 86 0.740 

(0.065) 
0.522 

(0.050) 
0.219 

(0.043) 
0.376 

(0.000)* 
 

                    *Standard error for F was not computed because sampling was done within families.  
 
 
was calculated (Table 3). There was significant difference 
between multilocus estimates and the mean of the single 
locus estimates, suggesting the existence of mating 
among relatives (biparental inbreeding). 
 
 
DISCUSSION 
 
The present work demonstrates that AFLP markers, 
though dominant with a lower information content than 
co-dominant  markers are adequate for the study of the 
mating system in M. oleifera. The estimates of 
outcrossing rates obtained indicate that M. oleifera seeds 
from the Mbololo seed source are a product of both 
selfing and outcrossing events. The mixed mating system 
(tm = 0.74) described for this species is consistent with 
the observations of self-compatibility in India (Puri, 1941; 
Jyoth et al., 1990). Comparable levels of outcrossing 
have been observed in some species such as Schiedea 
lydgatei (tm =0.694-0.874), Hydrophyllum appendiculatum 
(tm=0.62-0.81) by Norman et al. (1997) and Wolfe and 
Shore (1992), respectively. However, high outcrossing 
rates (tm > 0.9) have been observed in a majority of 
conifers (Furnier and Adams, 1986; Morgante et al., 
1991; Cottrell and White, 1995). 

Multilocus estimation is statistically more efficient than 
single-locus estimation because multilocus data sets 
contain more information about outcrossing than is 
available at any one single locus (Furnier and Adams, 
1986). Single-locus estimation is more sensitive to 
related matings other than selfing (Furnier and Adams, 
1986). Thus, if inbreeding other than selfing occurs, ts will 
generally underestimate outcrossing to a much greater 
extent than tm. In the current work, multilocus estimate 
differed significantly from the single-locus estimate, 
suggesting significant biparental inbreeding (Ritland, 
1990). Possible reasons for significant differences 
between the allele frequencies of ovules and incoming 
pollen (Table 3) have been advocated (Murawski and 
Hamrick, 1992; Furnier and Adams, 1986). Of these, the 
immigrant pollen from outside the sample population or 
from an unrepresented sample of maternal trees due to 
the small number of families sampled may account for 
the significant differences detected between the allele 
frequencies of ovules and incoming pollen observed in 
the present work. 

The fixation index, F, in the progeny was higher than 
expected based on the estimate of tm. Taking tm = 0.740, 
the expected fixation index was [F = (1-t)/(1+t)] = 0.149, 

while the estimated F was 0.376. A higher than expected 
F suggests more inbreeding than expected in the 
progeny population used to carry out the study. Since the 
mating system in M. oleifera involves some selfing, an 
excess of homozygotes in progenies would be expected 
if the populations are in mating-system equilibrium 
(Furnier and Adams, 1986). Mating-system studies of 
natural populations of Eucalyptus, reported an F higher 
than expected based on the estimated tm (Peters et al., 
1990; House and Bell, 1994). A χ2 test indicated that 
observed progeny genotype frequencies did not conform 
to those expected under mixed mating for some marker 
loci. Several factors can contribute to such violations: 
selection against homozygous genotypes, genotype-
dependent outcrossing rate, and unbalanced frequencies 
of pollen in the population (Ritland, 1983). 

In estimating heritability and genetic gains, the 
assumption that the relationships among the progeny is 
0.25 leads to inaccurate estimation of the additive 
variance if the relationships among the progeny are not 
entirely half sib (Falconer, 1960; Mousseau and Roff, 
1987; Askew and El-Kassaby, 1994). Therefore, a 26% 
selfing in M. oleifera can result in an increase of the 
coefficient of relationship which can lead to 
overestimation of the proportion of additive genetic 
variance. According to El-Kassaby et al. (1994), great 
overestimation will be achieved if selfing is ignored 
because selfing contributes additional factors to the 
covariance between relatives, including dominance and 
inbreeding depression effects and appropriate 
adjustments to estimators of quantitative genetic 
parameters are required. 

The presence of selfing as well as early sexual maturity 
(6 months to 1 year) might provide an alternative 
breeding programme for this species as compared with 
traditional directional selection. If inbreeding depression 
is weak, then it should be possible to use breeding 
schemes involving inbred lines and hybridisation (El-
Kassaby et al., 1994). In designing seed orchards, 
randomisation and minimum distance between related 
individuals will need to be worked out to maximise cross-
fertilisation among unrelated clones and to minimise 
selfing or mating among related ramets. The above 
suggestions are further strengthened by previous 
observations in India where hand-pollination with 
xenogamous pollen gave 100% fruit set, 81% seed set 
and 9% fecundity, while with geitonogamous pollen the 
respective rates were 62, 64 and 6% (Jyoth, 1990). 
Future  studies  should  focus  on   outcrossing   rates   of  
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individuals and populations in relation to mechanisms (or 
environmental parameters) that favour either outcrossing 
or selfing. 
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